



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A



AD-A148 614

AD NO. TECOM PROJECT NO. 7-CO-OM4-APO-002 REPORT NO. USACSTA-6109

FINAL REPORT

INTERNATIONAL WEAPON BLAST

OVERPRESSURE EXPERIMENT

W. SCOTT WALTON

MEASUREMENT AND ANALYSIS DIRECTORATE

US ARMY COMBAT SYSTEMS TEST ACTIVITY ABERDEEN PROVING GROUND, MD 21005-5059

NOVEMBER 1984



Period Covered: June to November 1984

Prepared for:

US ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GROUND, MD 21005-5055

US ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GROUND, MD 21005-5055 DISTRIBUTION UNLIMITED.

o 4

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

#### **DISPOSITION INSTRUCTIONS**

Destroy this report when no longer needed. Do not return to the originator.

#### DISCLAIMER STATEMENT

The views, opinions, and/or findings in this report are those of the author(s) and should not be construed as an official Department of the Army position, unless so designated by other official documentation.

The use of trade names in this report does not constitute an official indorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

| REPORT DOCUMENTATION PA                                                                                                                                                               | AGE                                                 | READ INSTRUCTIONS BEFORE COMPLETING FORM                                               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                       |                                                     | 3. RECIPIENT'S CATALOG NUMBER                                                          |  |  |  |  |  |
| TECOM Project 7-CO-OM4-APO-002                                                                                                                                                        |                                                     |                                                                                        |  |  |  |  |  |
| 4. TITLE (and Subtitle)                                                                                                                                                               |                                                     | 5. TYPE OF REPORT & PERIOD COVERED                                                     |  |  |  |  |  |
| INTERNATIONAL WEAPON BLAST OVERPRES                                                                                                                                                   | SURE                                                | Final, June to November<br>1984                                                        |  |  |  |  |  |
| EXPERIMENT                                                                                                                                                                            |                                                     | 6. PERFORMING ORG. REPORT NUMBER                                                       |  |  |  |  |  |
| i                                                                                                                                                                                     |                                                     | USACSTA-6109                                                                           |  |  |  |  |  |
| 7. AUTHOR(e)                                                                                                                                                                          |                                                     | 8. CONTRACT OR GRANT NUMBER(*)                                                         |  |  |  |  |  |
| W. Scott Walton                                                                                                                                                                       |                                                     | Not available                                                                          |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     |                                                                                        |  |  |  |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                           |                                                     | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                         |  |  |  |  |  |
| US Army Combat Systems Test Activit ATTN: STECS-MA-I                                                                                                                                  | y                                                   | Not and lable                                                                          |  |  |  |  |  |
| Aberdeen Proving Ground, MD 21005-                                                                                                                                                    | 5059                                                | Not available                                                                          |  |  |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                               |                                                     | 12. REPORT DATE                                                                        |  |  |  |  |  |
| Commander, TECOM                                                                                                                                                                      |                                                     | November 1984                                                                          |  |  |  |  |  |
| ATTN: AMSTE-AD-M                                                                                                                                                                      |                                                     | 13. NUMBER OF PAGES                                                                    |  |  |  |  |  |
| Aberdeen Proving Ground, MD 21005-                                                                                                                                                    | 5055                                                | 42                                                                                     |  |  |  |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(II different fr                                                                                                                                  | om Controlling Office)                              | 15. SECURITY CLASS. (of this report)                                                   |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     | Unclassified                                                                           |  |  |  |  |  |
| None                                                                                                                                                                                  |                                                     | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                                          |  |  |  |  |  |
|                                                                                                                                                                                       | !                                                   | None                                                                                   |  |  |  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                           | - · · · -                                           |                                                                                        |  |  |  |  |  |
| Γ                                                                                                                                                                                     | DISTRIBUTION S                                      | TATEMENT A                                                                             |  |  |  |  |  |
| Distribution unlimited.                                                                                                                                                               | Approved for p<br>Distribution                      |                                                                                        |  |  |  |  |  |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in )                                                                                                                              | Block 20. If different from                         | m Report)                                                                              |  |  |  |  |  |
| , , , , , , , , , , , , , ,                                                                                                                                                           | •                                                   |                                                                                        |  |  |  |  |  |
| None                                                                                                                                                                                  |                                                     |                                                                                        |  |  |  |  |  |
| None                                                                                                                                                                                  |                                                     |                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     |                                                                                        |  |  |  |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                               |                                                     |                                                                                        |  |  |  |  |  |
| Name                                                                                                                                                                                  |                                                     |                                                                                        |  |  |  |  |  |
| None                                                                                                                                                                                  |                                                     |                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     |                                                                                        |  |  |  |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                    |                                                     |                                                                                        |  |  |  |  |  |
| Air blast overpressure                                                                                                                                                                | Explosi                                             | ve blast                                                                               |  |  |  |  |  |
| Muzzle blast                                                                                                                                                                          | Transdu                                             |                                                                                        |  |  |  |  |  |
| Overpressure measurement                                                                                                                                                              |                                                     |                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     |                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                       |                                                     | ·                                                                                      |  |  |  |  |  |
| 20. ABSTRACT (Cantinue as reverse ofth II recovery and id                                                                                                                             |                                                     | N. C                                                                                   |  |  |  |  |  |
| Blast overpressure measurements were Valcartier (DREV), Quebec, Canada, (a) 105-mm L5 howitzer firing charge, (c) 110-gram bare spherical charge, 410-gram bare spherical charge, 25. | 10 to 20 Octobe<br>e 7; (b) 84-mm<br>25.2% RDX, 58. | er 1984, at positions near:<br>Carl Gustaf antitank weapon;<br>8% PETN, 16% inert, (d) |  |  |  |  |  |
| report describes the measurements m                                                                                                                                                   |                                                     |                                                                                        |  |  |  |  |  |
| (USACSTA). A complete report descr                                                                                                                                                    |                                                     |                                                                                        |  |  |  |  |  |

teams representing the United States, Canada, and the United Kingdom will be

DD FORM 1473 ED

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

20. prepared by the Defence Research Establishment Valcartier. During this test, large gage-to-gage variations were noticed in the USACSTA transducers. These variations were present only in the first 200 microseconds of the measurements.

|               | )                          |
|---------------|----------------------------|
| Acces         | sion For                   |
| DTIC<br>Unair | GRA&I TAB Counced Tication |
| By            | ibution/                   |
| F-1           | lability Codes             |
| Dist<br>A-1   | Avail and/or<br>Special    |

Unclassified



DEPARTMENT OF THE ARMY U.S ARMY COMBAT SYSTEMS TEST ACTIVITY Mr. Walton/les/283-4318 ABERDEEN PROVING GROUND, MARYLAND 21006-8050

REPLY TO

21 November 1984

STECS-MA-I

SUBJECT: Final Report of International Weapon Blast Overpressure Experiment, TECOM Project No. 7-CO-OM4-APO-002, Report No. USACSTA-6109

US Army Test and Evaluation Command

ATTN: AMSTE-AD-M

#### 1. REFERENCES

a. TECOM Regulation 70-12, 1 June 1973, with Change 2.

b. Letter, DRSTE-AD-M, TECOM, 19 January 1984, subject: Test Directive, International Weapon Blast Overpressure, TRMS No. 7-CO-OM4-APO-002.

#### 2. BACKGROUND

Firing restrictions or even acceptance or rejection of a large caliber weapon are often based on blast overpressure measurements; therefore, there is considerable international interest in the accuracy of these measurements. A joint blast overpressure experiment was proposed and hosted by the Defence Research Establishment Valcartier (DREV), under the sponsorship of The Technical Cooperation Program (TTCP) subgroup W (Conventional Weapons Technology), Technical Panel W-2 (Launch and Flight Dynamics), Key Technical Area 7 (KTA-7). In this experiment, five teams, representing the US, UK, and Canada made blast overpressure measurements at positions near the following sources of blast overpressure:

- a. 105-mm L5 howitzer firing charge 7.
- b. 84-mm Carl Gustaf antitank weapon.
- c. 110-gram bare spherical charge, 25.2% RDX, 58.8% PETN, 16% inert.
- d. 410-gram bare spherical charge, 25.2% RDX, 58.8% PETN, 16% inert.

#### 3. TEST OBJECTIVE

Measure blast overpressure at levels experienced in crew positions of large caliber weapons. Make these measurements under controlled conditions so that the results of each of the five teams can be compared.

#### 4. SCOPE

A complete report describing the results obtained by the five teams will be prepared by DREV. This report will discuss only the results obtained by the US Army Combat Systems Test Activity (USACSTA).

#### 5. SUMMARY OF RESULTS

i Correspondente de Correspondente de la companie de la compa

- experiment provided a unique opportunity for multilateral a. This exchange on experimental technique and an excellent test of instrumentation accuracy.
- b. Overpressure levels in the operator positions of the two weapons exceeded the current US Army human tolerance criteria.
- c. Large gage-to-gage variations (20%) were noticed on the USACSTA transducers during the bare charge tests even though the round-to-round variations were small (3%). These variations were present only during the first 200 microseconds of the signal.

#### 6. CONCLUSIONS

- a. This experiment provided a significant first step toward international standardization of weapon overpressure measurement.
- b. Although the large gage-to-gage variation is within the ±10% value estimated earlier, steps should be taken to improve accuracy.

#### 7. RECOMMENDATION

A methodology study should be conducted to improve the accuracy of blast overpressure measurements.

FOR THE COMMANDER:

3 Encl

1. Details of Test

2. References

3. Distribution List

for JAMES W. FASIG

Director, Measurements and

Analysis Directorate

#### DETAILS OF TEST

#### 1. BARE CHARGE TESTING

Bare spherical explosive charges were fabricated by DREV using 25.2% RDX, 58.8% PETN, and 16% binder by weight. Two size charges, 110 and 410 grams, were used. Transducers were placed in a circle around the charge, at a distance of  $4.000 \pm 0.005$  meters from the charge.

Figure 1-1 is a photograph showing the firing site and the circle of transducers around the charge. Figure 1-2 shows the technique used to suspend the charge and locate the center of the charge accurately.

Figure 1-3 illustrates a typical overpressure measurement from the 110-gram charge. Figure 1-4 shows the overpressure from a 410 gram charge. Figure 1-5 illustrates that the arrival time for the 110 gram bare charge is approximately 8.5 ms.



l page 2



Figure 1-2. Photograph of technique used to hang charge and ensure the location accuracy of charge center to  $\pm 2~\text{mm}$ .





Figure 1-3. Example of blast overpressure at 4 meters from 110 gram bare spherical charge. Upper trace shows details of initial 1.8 ms. Measurement made with PCB102M66 transducer mounted in skimmer plate.







Figure 1-4. Example of blast overpressure at 4 meters from 410 gram bare spherical charge. Upper trace shows detail of initial 1.8 ms. Measurement made with PCB102M66 transducer mounted in skimmer plate.

1 page 6 COUNTS

Figure 1-5. Blast wave arrival at 5 positions, all located 4 meters from 110 gram bare spherical

As shown in Table 1-1, the measured peak pressure, impulse, arrival time, and duration compare favorably with values calculated by Soroka (encl 2, ref 1) based in Goodman's (encl 2, ref 2) data for pentolite.

### TABLE 1-1. COMPARISON OF FASURED BLAST OVERPRESSURE WITH THEORETICAL VALUES FOR PENTOLITE

#### 110 Gram Bare Spherical Charge

Mean Maximum Minimum Theoretical

Peak overpressure in KPa

16.02 18.01 14.80 15.72

Impulse in KPa (ms)

11.40 12.17 10.64 12.29

Maximum Minimum Theoretical

Arrival time in ms

8.690 8.362 8.306

Duration in ms

1.84 1.66 1.69

#### 410 Gram Bare Spherical Charge

#### Mean Maximum Minimum Theoretical

Peak overpressure in KPa

33.34 36.26 30.12 30.37

Impulse in KPa (ms)

26.46 29.11 24.88 28.81

#### Maximum Minimum Theoretical

Arrival time in ms

7.245 7.023 7.031

Duration in ms

2.37 2.05 2.17

Rounds 39 to 43 were a 5-shot group of 110 gram charges. No changes to the transducers were made during this group. As shown in Figures 1-6 through 1-8, the round-to-round repeatability of any one transducer was excellent (3% or less extreme spread).

When one transducer is compared to another, as shown in Figure 1-9, the difference in peak pressure is 15%. Note that approximately 200 ms after the shock wave arrives, the two signals agree perfectly. Hence the large gage-to-gage discrepancy is not caused by calibration error.

Considerable care was exercised in positioning the transducers to the 4 meter distance and alining then to within  $1^{\circ}$  of the center of the charge. Removing a transducer from the tripod on one day and then replacing on another day resulted in the 11% discrepancy shown in Figure 1-10. Figure 1-11 shows removal of the tape from transducer No. 2180 which caused a discrepancy of 6%.

Two different mounting configurations were used for the bare charge tests. A skimmer plate mount and a blunt cylinder mount, as described by Walton (encl 2, ref 3) were utilized. Higher peak pressures were obtained with four of the six transducers using the blunt cylinder mount as shown in Figure 1-12. Reasonable agreement between the blunt cylinder and the skimmer plate was obtained with two of the six transducers, as shown in Figure 1-13. Figure 1-14 shows excellent agreement between the skimmer plate and the blunt cylinder, but note that different transducers are used.

The reasons for the variations in peak pressure are not understood at this time. The sensitivity of the PCB transducer to variations in mounting configurations has been discussed earlier by Clare and Clare (encl 2, ref 5).

A 1-mm layer of room temperature vulcanizing silicone rubber (RTV) was applied to transducer No. 2883 for extra thermal protection as recommended by Reference 4 of Enclosure 2. As shown in Figure 1-15, this coating increased the rise time and caused some artifacts in the signal. It is felt that the small artifacts observed are preferable to the large offset caused by the high thermal energy environments that require RTV protection.





PROCESS SESSENTIAL SES

Figure 1-7. Blast overpressure from 5-round group of 110 grams bare spherical charges as measured by transducer No. 2175. Notice that the extreme spread of peak pressure is approximately 2.3%.

















Tables 1-2 and 1-3 summarize the results of the bare charge testing. Note that the extreme spread in peak pressure (20%) is almost twice as large as the extreme spread in impulse (13%). Also note that the discrepancy between the blunt cylinder and the skimmer plate mount is more evident in peak pressure differences than in impulse differences.

1 (Cont'd)

TABLE 1-2. BLAST OVERPRESSURE MEASURED 4 METERS FROM 110 GRAM BARE CHARGE

| Secondary   Seco   | Seek   Imp.   A   B   Peak   Imp.   A   B    |     | S            | Gage No. 2175 | 2175   |        | Ga          | Gage No. 2180 | 2180    |          | Ga          | Gage No. 2878 | - }  |         | Gas           | Gage No. 2881 | 2881   |          | Š           | Gage No. 2882 | 2882 |          | ర్          | Gage No. | 2885 |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|---------------|--------|--------|-------------|---------------|---------|----------|-------------|---------------|------|---------|---------------|---------------|--------|----------|-------------|---------------|------|----------|-------------|----------|------|----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.01   - 1.7   9     15.85   -   1.78   10   15.83   -   1.7   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   15.31   -   1.6   9   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.6   9   1.7   9   1.7   9   1.6   9   1.7   9   1.7   9   1.6   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.7   9   1.         | 밁   | Peak         | Imp.          | V      | m      | Peak        | Imp.          | V       | <b>m</b> | Peak        | Imp.          | 1    | <u></u> | Peak          | Imp.          | A      | <b>m</b> | Peak        | Imp.          | V    | <b>2</b> | Peak        |          | 4    | <b>m</b> |
| Syl 11.50 1.79 9 16.32 - 1.79 9 16.31 1.79 1 16.32 - 1.66 9 15.31 11.50 1.79 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 - 1.66 9 16.32 11.77 9 16.32 11.77 9 16.32 11.77 9 16.32 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 16.32 11.77 11.77 9 17.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 11.77 1 | Sylinisoning Space — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   |              |               |        |        | BC<br>18.01 |               | 1.7     | •        | ı           | ı             |      |         | BC<br>15 85   | ı             | 1 78   | 2        | SP          |               | -    | c        |             |          |      |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp. 11.50 1.79 9 15.41 1.71 9 15.49 10.64 1.79 9 15.51 10.91 1.79 9 17.64 11.08 1.78 9 15.51 10.91 1.70 9 15.51 10.91 1.70 9 17.64 11.08 1.78 9 15.51 10.91 1.70 9 17.64 11.08 1.78 9 17.54 11.08 1.78 9 17.54 11.08 1.78 9 17.54 11.08 1.78 9 17.54 11.08 1.70 9 17.54 11.08 1.70 9 17.54 11.08 1.70 9 17.54 11.08 1.70 9 17.54 11.08 1.70 9 17.54 11.08 1.70 9 17.54 11.09 1.81 9 17.54 11.09 1.71 1.70 9 17.51 11.61 1.71 10 15.50 11.17 1.78 9 17.51 11.65 11.80 10 Sp. 15.51 11.61 1.71 10 15.50 11.17 1.78 9 17.54 11.75 9 17.54 11.81 9 17.54 11.75 9 17.54 11.81 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.54 11.81 1.70 9 17.55 11.54 1.70 9 17.55 11.54 1.70 9 17.55 11.54 1.70 9 17.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.55 11.5 | 7   |              |               |        |        |             |               | ;       | •        |             |               |      |         | BC            | i             | 7.10   | 3        | SP SP       | ı             | :    | •        |             |          |      |          |
| 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.91 11.50 1.79 9 5.92 11.51 1.70 9 5.93 11.51 1.70 9 5.94 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1.70 9 5.95 11.51 1 | 15.49   10.64   1.79   9   15.51   10.91   1.79   9   15.51   10.91   1.79   9   17.64   11.08   1.78   9   15.51   1.51   1.79   9   15.51   1.61   1.84   9   1.56   11.08   1.78   9   1.51   1.77   9   15.71   11.65   1.80   10   8   1.59   12.17   1.77   9   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   8   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   15.71   11.65   1.80   10   10.83   11.64   1.75   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   11.65   1.80   1   | ~   |              |               |        |        |             |               |         |          | ۱ و         | ı             | ı    |         | 15.65         | ı             | 1.79   | 6        | 16.32       | ı             | 1.66 |          |             |          |      |          |
| Sp. 11.50 1.79 9 15.18 11.50 1.79 9 16.18 11.51 1.77 9 16.18 9  5.77 11.62 1.77 9 16.18 1 1.84 9  5.77 11.62 1.77 9 16.18 1 1.84 9  5.77 11.62 1.77 9 16.18 1 1.84 9  5.77 11.62 1.77 9 16.18 1 1.85 1.80 10  5.77 11.62 1.77 9 16.18 1 1.85 1.80 10  5.78 11.41 1.74 9 16.25 11.61 1.71 10 15.50 11.17 1.78 9  6.81 11.44 1.75 9 16.21 10.24 1.75 9 16.21 11.45 1.75 9 16.31 1.70 9  6.81 11.34 1.75 9 16.31 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SP 11.50 1.79 9 15.89 11.15 1.77 9 16.18 11.41 1.84 9 5.91 11.50 1.79 9 15.89 11.15 1.77 9 16.18 11.41 1.84 9 5.77 11.62 1.77 9 1 1.51 1.77 9 16.18 11.41 1.84 9 5.77 11.62 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9 1 1.51 1.77 9  | י י | ,            |               |        |        |             |               |         |          | 3r<br>15.49 | 10.64         | 1.79 |         | bt.<br>15.51  | 10.01         | 1.79   | 6        | BC<br>17.64 | 11.08         | 1.78 |          |             |          |      |          |
| 5.77   11.52   1.77 9   15.89   11.15   1.77 9   16.18   11.41   1.84 9   5.77   11.62   1.77 9   1.51   1.77 9   1.51   1.77 9   5.77   11.62   1.77 9   1.51   1.77 9   5.77   11.62   1.77 9   5.77   11.62   1.77 9   5.77   11.62   1.77 9   5.79   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70   11.41   1.74 9   5.70 | 5.71 11.50 1.79 9 15.89 11.15 1.77 9 16.18 11.41 1.84 9 5.77 11.62 1.77 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   | ည်း<br>(၁၈   | ;             |        | •      |             |               |         |          | SP          |               |      |         | BC            |               |        |          |             |               |      |          |             |          |      |          |
| 15.77   11.62   1.77   9   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.77   11.62   1.77   9   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2   | 15.91<br>SP  | 11.50         |        | •      |             |               |         |          | 15.89       | 11.15         | 1.77 |         | 16.18         | 11.41         | 1.84   | 6        |             |               |      |          |             |          |      |          |
| SP 15.71 11.65 1.80 10 SP 15.61 11.77 1.77 SP 15.71 11.65 1.80 10 SP 15.71 11.77 1.77 SP 15.71 11.65 1.80 10 SP 15.71 11.77 1.77 SP 15.71 11.61 1.77 1.77 SP 15.71 11.61 1.77 SP 15.71 11.61 SP 15.71 11.77 SP 15.71 11.61 SP 15.71 11.77 SP 16.78 11.74 1.75 SP 16.78 11.74 1.75 SP 16.78 11.74 1.75 SP 16.78 11.74 1.75 SP 16.78 11.79 SP 16.78 11.79 SP 16.78 11.79 SP 16.78 11.79 SP 16.79 11.79 SP 16.79 11.79 SP 16.79 11.79 SP 16.79 11.79 11.79 SP 16.79 SP 16.79 11.79 SP 16.79 SP 16.70 SP 17.70 SP 17.7 | Sp. 1.5.75 11.61 1.71 10 15.50 11.17 1.78 9  4.91 11.41 1.74 9  5.14 11.56 1.14 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.14 11.56 1.15 9  5.15 11.41 1.75 9  5.15 11.41 1.75 9  5.15 11.41 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.44 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 11.45 1.75 9  6.15 1 | 3   | 15.77        | 11.62         | 1.77   | 6      |             |               |         |          |             |               |      | ,       | sr<br>15.71   | 11.51         | 1.77   | 6        |             |               |      |          |             |          |      |          |
| SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.75   11.61   1.74   9   15.71   11.65   1.80   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37  |              |               |        |        |             |               |         |          |             |               |      |         | SP            | ;             |        |          |             |               |      |          | SP          |          |      |          |
| 4.91   11.41   1.74   9   15.75   11.61   1.71   10   15.50   11.17   1.78   9   15.61   11.49   1.81   9   16.61   1.71   1.01   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.75   9   16.61   1.71   1.72   9   16.71   1.81   1.82   1.72   9   16.71   1.81   1.82   1.82   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.84   1.83   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1.84   1. | 15.75   11.61   1.71   10   15.50   11.17   1.78   9   15.61   11.49   1.81   9   16.40   1.81   9   16.40   1.81   9   16.40   1.81   9   16.40   1.81   9   16.40   1.81   9   16.40   1.81   1.81   1.81   1.82   1.82   1.82   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   1.83   | 38  |              |               |        |        | SP          |               |         |          | SP          |               |      |         | 15.71         | 11.65         | 1.80   | 10       | ďS          |               |      |          | 15.98       | 12.17    | 1.17 | •        |
| SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SP 11.41 1.74 9 16.6 11.51 1.75 9 16.16 12.11 1.81   BC 11.51 1.75 9 16.40 12.01 1.81   BC 11.51 1.75 9 16.40 12.01 1.81   BC 11.51 1.75 9 16.40 12.01 1.81   BC 11.34 1.75 9 16.40 12.01 1.83   BC 11.35 1.75 9 16.51 11.84 1.75 9 16.40 12.01 1.81 1.82   BC 11.36 1.76 1.76 9 16.51 1.76 9 16.12 10.74 1.75 9 16.52 11.17 1.72 9 16.52 11.17 1.72 9 16.52 11.17 1.72 9 16.52 11.17 1.72 9 16.52 11.17 1.72 9 16.51 11.81 1.82   BC 11.30 1.76 1.76 1.76 9 16.31 1.75 1.74 9 16.31 10.82 1.78 9 17.88 1.81 9 16.52 11.15 1.70 9 16.31 1.31 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.70 9 17.81 10.82 1.78 9 17.88 1.18 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 1.78 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 17.88 9 | Ş   | ŝ            |               |        |        | 15.75       |               | 1.71    |          | 15.50       | 11.17         | 1.78 |         |               |               |        |          | 15.61       | 11.49         | 1.81 | 6        |             |          |      |          |
| 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 1.75 9 5.14 11.56 1.75 9 5.14 11.56 1.75 9 5.14 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9 5.15 11.56 1.75 9  | 10.10 11.11 1.81  10.10 11.11 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33  | 16.91        | 11 41         | 1 74   | 0      |             |               |         |          |             |               |      |         | BC            | :             |        | •        |             |               |      |          | SP          |          | ;    |          |
| 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.15 11.50 1.75 9 5.28 11.44 1.75 9 5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.32 1.78 9 5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.32 1.78 9 5.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 1.78 9 17.08 11.18 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31 1.70 9 15.31  | 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.14 11.56 1.74 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.44 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 1.75 1.75 9 5.15 11.45 1.75 9 5.15 11.45 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3   | <b>B</b> C   |               | :      | •      |             |               |         |          |             |               |      |         | 17 - 10<br>BC | 11./1         | 1./2   | •        |             |               |      |          | 16.16       | 12.11    | 1.81 | -        |
| Horitist Horitis Horitist Horitist Horitis Horitis Horitist Horitist Horitist Horitist Horitist Horiti | Horizon Hara Hara Hara Hara Hara Hara Hara Har                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17  | 15.14        |               |        | 6      |             |               |         |          |             |               |      | •       | 16.68         | 11.53         | 1.75   | 6        |             |               |      |          | 36<br>16.40 | 12.04    | 1.81 | 10       |
| 4.81 11.34 1.75 9  4.81 11.34 1.75 9  4.80 11.30 1.74 10  5.29 11.51 1.79 9  5.29 11.51 1.79 9  5.29 11.51 1.79 9  5.29 11.54 10  5.29 11.55 1.75 8  5.29 11.54 1.75 9  5.29 11.54 1.75 9  5.29 11.54 1.75 9  5.29 11.55 1.75 8  5.29 11.54 1.75 9  5.29 11.54 1.75 9  5.29 11.55 1.75 8  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 9  5.29 11.55 1.75 1.75 9  5.29 11.55 1.75 1.75 1.75 1.75 1.75 1.75 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.81 11.34 1.75 9  6.4.81 11.34 1.75 9  8.6.  4.80 11.34 1.75 9  8.6.  4.80 11.34 1.75 9  8.6.  4.80 11.34 1.75 9  8.6.  4.80 11.36 1.74 10  8.6.  5.29 11.51 1.75 9  8.6.  5.29 11.51 1.75 8  8.6.  5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 9 16.52 11.17 1.72 9  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8.70  8. | 4   | 14. 88       | 77 11         | 1 76   | c      |             |               |         |          |             |               |      |         | BC            | :             | •      | •        |             |               |      |          | SP          |          |      |          |
| 4.81   11.34   1.75   9   11.51   1.73   9   11.51   1.73   9   11.51   1.73   9   11.81   1.82   180   1.82   190   1.51   1.75   8   16.36   11.81   1.82   180   1.82   190   1.55   11.45   1.81   1.82   180   1.81   1.82   180   1.81   1.82   180   1.81   1.82   180   1.81   1.81   1.82   180   1.81   1.81   1.82   180   1.81   1.81   1.82   180   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   1.81   | 4.81 11.34 1.75 9  4.80 11.30 1.74 10  BC 5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 9 16.52 11.17 1.72 9  5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 9 16.52 11.17 1.72 9  5.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 10.65 1.82 10 15.65 11.36 1.81 9 16.82 11.15 1.70 9  5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 10.82 1.78 9 17.08 11.18 1.70 9 15.21 11.50 1.78 10  5.10 11.26 1.74 9 15.31 10.82 1.78 9 17.08 11.16 1.77 9 15.39 11.27 1.83 10  5.10 11.25 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.15 1.77 9 15.39 11.27 1.83 10  5.10 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.2 | 42  | 3C           | 11.44         | 0/-1   | ,      |             |               |         |          |             |               |      | _       | 16.80<br>RC   | 11.44         | 1.72   | •        |             |               |      |          | 16.31       | 12.00    | 1.83 | 2        |
| 4.80   11.30   1.74   10  4.80   11.30   1.74   10  5.29   11.51   1.79   -   15.95   11.65   1.76   9   16.12   10.74   1.75   9   15.69   11.42   1.81   9   16.52   11.17   1.72   9    5.29   11.51   1.79   -   15.95   11.65   1.76   9   16.12   10.74   1.75   9   15.69   11.42   1.81   9   16.32   11.17   1.72   9    5.29   11.51   1.79   -   16.03   11.57   1.74   9   16.32   10.65   1.82   10   15.65   11.36   1.81   9   16.82   11.15   1.70   9    5.29   11.49   1.76   -   16.03   11.57   1.74   9   15.31   10.82   1.78   9   17.08   11.18   1.70   9   15.21   11.50   1.78   10    5.09   11.26   1.74   9   16.52   11.14   1.74   9   15.31   10.82   1.78   9   17.08   11.18   1.70   9   15.21   11.50   1.78   10    5.09   11.26   1.74   9   16.52   11.14   1.74   9   15.31   10.82   11.15   1.70   9   15.21   11.50   1.78   10    5.09   11.26   1.78   9   17.84   11.33   1.74   9   15.03   11.07   1.82   9   16.96   11.15   1.77   9   15.39   11.27   1.83   10    5.15   11.39   1.78   9   17.84   11.33   1.74   9   15.03   11.07   1.82   9   16.96   11.15   1.77   9   15.39   11.27   1.83   10    5.16   1.17   1.17   1.17   1.17   9   15.39   11.27   1.83   10    5.17   11.15   1.75   1.83   10    5.18   1.19   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81   1.71   1.81  | C SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :   | 14.81        | 11.34         | 1.75   | 6      |             |               |         |          |             |               |      |         |               | 11.51         | 1.73   | 6        |             |               |      |          | sr<br>16.26 | 11.98    | 1.82 | 10       |
| 1,725   11.51   1.79   -15.95   11.65   1.76   9   16.12   10.74   1.75   9   15.69   11.42   1.81   9   85     5.29   11.51   1.79   -15.95   11.65   1.76   9   16.12   10.74   1.75   9   15.69   11.42   1.81   9   16.52   11.17   1.72   9     5.29   11.51   1.79   -15.95   11.65   1.74   9   16.32   10.65   1.82   11.36   1.81   9   16.82   11.15   1.70   9     5.29   11.49   1.76   -16.03   11.57   1.74   9   16.32   10.65   1.82   10   15.65   11.36   1.81   9   16.82   11.15   1.70   9     5.09   11.26   1.74   9   15.21   10.82   1.78   9   17.08   11.18   1.70   9   15.21   11.50   1.78   10     5.09   11.26   1.74   9   15.31   10.82   1.78   9   17.08   11.18   1.70   9   15.21   11.50   1.78   10     5.75   11.39   1.78   9   17.84   11.33   1.74   9   15.03   11.07   1.82   9   16.96   11.16   1.77   9   15.39   11.27   1.81   10     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 8 BC  5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 9 16.52 11.17 1.72 9  5.29 11.51 1.79 - 15.95 11.65 1.76 9 16.12 10.74 1.75 9 15.69 11.42 1.81 9 16.82 11.15 1.70 9  5.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 10.65 1.82 10.156 11.36 1.81 9 16.82 11.15 1.70 9  5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 10.82 1.78 9 17.08 11.18 1.70 9 15.21 11.50 1.78 10  5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 10.82 1.78 9 17.08 11.18 1.70 9 15.21 11.50 1.78 10  5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 10  5.15 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 10  5.15 11.16 1.77 9 15.39 11.27 1.83 10  5.15 11.16 1.77 9 15.39 11.27 1.83 10  5.15 11.16 1.77 9 15.39 11.27 1.83 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £3  | BC<br>1 4 80 | 11 30         |        |        |             |               |         |          |             |               |      |         | BC            | :             |        | •        |             |               |      |          | SP          |          |      |          |
| 5.29     1.51     1.79   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77  | SP. SP       | 00:11         |        |        | Q.          |               |         |          | Ę,          |               |      | •       | 17.25<br>SP   | 11.45         | 1./5   | ×        | ٥           |               |      |          | 16.36       | 11.81    | 1.82 | 2        |
| P SP SP SP SP BC SP BC SP BC SP BC S.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 10.65 1.82 10 15.65 11.36 1.81 9 16.82 11.15 1.70 SP SC SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P SP SP SP SP SC SC SP SC SC SP SC SP SC                                                                                                                                             |     | 15.29        |               |        | ı      | 15.95       | 11.65         | 1.76    |          | 16.12       | 10.74         | 1.75 |         | 15.69         | 11.42         | 1.81   |          | 16.52       | 11.17         | 1.72 | _        |             |          |      |          |
| 5.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 10.65 1.82 10 15.65 11.36 1.81 9 16.82 11.15 1.70 C SP SP SC SP SP SC SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.29 11.49 1.76 - 16.03 11.57 1.74 9 16.32 10.65 1.82 10 15.65 11.36 1.81 9 16.82 11.15 1.70 C SP SP SC SP SC SP SC SP SC SP SP SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45  | SP           |               |        |        | SP          |               |         |          | BC          |               |      |         |               |               |        |          | BC          |               |      |          |             |          |      |          |
| 5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 10.82 1.78 9 17.08 11.18 1.70 9 15.21 11.50 1.78 C SP BC BC SP BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.09 11.26 1.74 9 16.52 11.14 1.74 9 15.31 10.82 1.78 9 17.08 11.18 1.70 9 15.21 11.50 1.78 C SP BC SP SP BC SP SP SP BC SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9   | 15.29<br>BC  |               |        | ı      | 16.03<br>RC | 11.57         | 1.74    |          | 16.32<br>cp | 10.65         |      |         |               | 11.36         | 1.81   |          | 16.82       | 11.15         |      |          |             |          |      |          |
| C SP 5.75 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 = Positive phase A-impulse in kPa-milliseconds. = skimmer plate. = blunt cylinder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C SP 5.75 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 = Positive phase A-impulse in kPa-milliseconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 15.09        |               | 1.74   | 6      | 16.52       | 11.14         | 1.74    |          | 15.31       | 10.82         | 1.78 |         |               | 11.18         | 1.70   |          | sr<br>15.21 | 11.50         | 1.78 |          |             |          |      |          |
| 5.75 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 = Positive phase A-impulse in kPa-milliseconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.75 11.39 1.78 9 17.84 11.33 1.74 9 15.03 11.07 1.82 9 16.96 11.16 1.77 9 15.39 11.27 1.83 = Positive phase A-impulse in kPa-milliseconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41  | BC           |               |        |        | BC          |               |         |          | SP          |               |      |         |               |               | •<br>• |          | SP          |               | :    |          |             |          |      |          |
| <ul><li>Positive phase A-impulse in kPa-millisecon</li><li>skimmer plate.</li><li>blunt cylinder.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Positive phase A-impulse in kPa-millisecon</li> <li>skimmer plate.</li> <li>blunt cylinder.</li> <li>Peak overpressure in kPa.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 15.75        | 11.39         | 1.78   | 6      | 17.84       |               | 1.74    |          | 15.03       | 11.07         | 1.82 |         | 16.96         | 11.16         | 1.77   | 6        | 15.39       | 11.27         | 1.83 | 10       |             |          |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Imp | Pos          | itive p       | hase A | - impi | ulse in     | kPa-mi        | lliseco | nds.     |             |               |      |         |               |               |        |          |             |               |      |          |             |          |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SP  |              | mmer pl       | ate.   |        |             |               |         |          |             |               |      |         |               |               |        |          |             |               |      |          |             |          |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak = Peak overpressure in kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BC  | = blu        | nt cyli       | nder.  |        |             |               |         |          |             |               |      |         |               |               |        |          |             |               |      |          |             |          |      |          |

skimmer plate.
 blunt cylinder.
 Peak overpressure in kPa.
 A-duration (defined in MIL-STD-1474B) in milliseconds.
 B-duration (defined in MIL-STD-1474B) in milliseconds.

TABLE 1-3. BLAST OVERPRESSURE MEASURED 4 METERS FROM 410 GRAM BARE CHARGE

| (             | Cont          | ' d      | )                                       |     |                     |     | 10                  |    | 10               |    | ,                |     | •          |          | ,          |    | ı                |    | ,                |          | 1                |
|---------------|---------------|----------|-----------------------------------------|-----|---------------------|-----|---------------------|----|------------------|----|------------------|-----|------------|----------|------------|----|------------------|----|------------------|----------|------------------|
| 2885          | ┥             |          |                                         |     |                     |     | 27.04 2.05 10       |    | 2.08             |    | 2.23             |     | ı          |          | 2.10       |    | 2.10             | BC | 2.13             |          | 2.19             |
| Gage No. 2885 | Peak Imp. A   |          |                                         |     |                     |     | 7.04                |    | 29.11            |    | 27.24            |     | 1          |          | 26.14      |    | 5.66             |    | 5.07             |          | 5.30             |
| Gage          | ak            |          |                                         |     |                     |     | 35.63 2             |    | 35.54 2          |    |                  | SP  | 98.        | BC       | .44        | BC | .22              |    | .60              |          | .66              |
| i             |               |          |                                         |     |                     |     |                     |    |                  | SP | - 35             | SP  | - 34       | BC       | - 34       | BC | - 34             | 20 | 34               | BC       | 34               |
|               | <b>6</b>      |          | 9                                       |     | 7                   |     |                     |    |                  |    |                  |     |            |          |            |    |                  |    |                  |          |                  |
| 2882          | V             |          | 2.1                                     |     | 2.1                 |     |                     |    |                  |    | 2.2              |     | 2.1        |          | 2.1        |    | 2.1              |    |                  |          |                  |
| Gage No. 2882 | Peak Imp. A B |          | 25.97                                   |     | 25.81               |     |                     |    |                  |    | 32.44 26.99 2.22 |     | 27.18      | BC       | 25.29 2.17 |    | 32.97 24.88 2.17 |    |                  |          |                  |
| Gag           | ak            |          | .20                                     |     | .26                 |     |                     |    |                  |    | 74.              |     | .31        |          | .97        | BC | .97              |    |                  |          |                  |
|               |               | BC       | 1 35                                    | BC  | 1 35                |     | -                   |    | _                | SP | - 32             | SP  | - 32       | BC       | 32         | BC | 32               |    |                  |          |                  |
|               | B             |          | 8                                       |     | 2 1                 |     | 7                   |    | 3 11             |    |                  |     |            |          |            |    |                  |    |                  |          |                  |
| 2881          | V             |          | 5 2.1                                   |     | 2.2                 |     | 2.1                 |    | 2.2              |    | 2.2              |     | 2.2        |          |            |    |                  |    | 2.1              |          | 2.2              |
| Gage No. 2881 | Peak Imp. A B |          | 30.54 25.35 2.18 11 35.20 25.97 2.16 10 |     | 25.30               |     | 25.10               |    | 30.12 26.22 2.23 |    | 26.61 2.28       |     | 26.56 2.20 |          |            |    |                  | BC | 26.07            |          | 34.09 26.57 2.21 |
| Ca            | eak           | ñ        | 0.54                                    | ပ္က | 0.52                | ပ္က | 0.43                | ŭ  | 0.12             | ي  | - 33.71          | ပ္ထ | 33.87      |          |            |    |                  | Ų  | 2.64             | ن        | 4.09             |
|               | <b>2</b>      | <b>P</b> | <b>C</b> 1                              | _   | 6.3                 | -   | 11 3                | -  | 13 3             |    |                  | =   | 1          |          |            |    |                  | E  | ا<br>ا           | <b>E</b> | 1                |
| 878           | V             |          |                                         |     |                     |     | 25.18 2.18 11       |    | 27.22 2.23 13    |    |                  |     | 2.20       |          |            |    |                  |    | 2.17             |          | 2.13             |
| Gage No. 2878 | Peak Imp. A   |          |                                         |     |                     |     | .18                 |    | .22              |    | 34.06 25.48 2.17 |     | 25.83 2.20 |          |            |    |                  |    | 33.66 25.10 2.17 |          | 33.96 25.26 2.13 |
| Gage          | 시             |          |                                         |     |                     |     | 33.21 25            |    | 17 27            |    | 06 25            |     | 34.25 25   |          |            |    |                  |    | 66 25            |          | 96 25            |
| İ             |               |          |                                         |     |                     |     | 33.                 | SP | 32.              | BC | 34.              | BC  | 34.        |          |            |    |                  | BC |                  | BC       | 33.              |
|               |               |          | 2                                       |     | 2                   |     |                     |    |                  |    | 1                |     | 1          |          | 1          |    |                  |    | 1                |          | 1                |
| 2180          | V             |          | 2.19                                    |     | 2.08                |     |                     |    |                  |    | 2.31             |     | 2.31       |          | 2.35       |    | 2.34             |    | 2.21             |          | 2.25             |
| Cage No. 2180 | Imp.          |          | 26.75                                   |     | 26.32               |     |                     |    |                  |    | 28.15 2.31       |     | 28.10 2.31 |          | 27.60      |    | 27.22            |    | 26.65            |          | 27.14            |
| Gag           | Peak Imp.     |          | 34.15 26.75 2.19 10                     | •   | 34.13 26.32 2.08 10 |     |                     |    |                  |    | 31.20            |     | 30.51      |          | 36.06      |    | 36.26            |    | 34.19 26.65 2.21 | •        | 33.96 27.14 2.25 |
| )<br>         | B P           | <b>×</b> | 36                                      | ×   | ř                   |     | -                   |    | ,                |    | - 3              | SI  | <u>~</u>   | æ        | - 36       | æ  | - 36             | B  | 37               | æ        | 33               |
| ~             | 1             |          |                                         |     |                     |     | 20 1                |    | 25 1             |    |                  |     | 27         |          | 37         |    |                  |    |                  |          |                  |
| . 217         | <b>V</b>      |          |                                         |     |                     |     | 0 2.                |    | 7 2.             |    | 26.90 2.30       |     | 3 2.27     |          | 7 2.37     |    | 1 2.16           |    |                  |          |                  |
| Gage No. 2175 | Imp.          |          |                                         |     |                     |     | 30.82 26.10 2.20 11 |    | 26.47 2.25 11    |    |                  |     | 27.13      |          | 28.27      |    | 28.41            |    |                  |          |                  |
| 3             | Rd Peak Imp.  |          |                                         |     |                     | BC  | 30.82               | BC | 30.70            | BC | 33.34            | BC  | 33.10      | SP       | 32.32      | SP | 32.90            |    |                  |          |                  |
|               | 2             | 4        |                                         | v   |                     | 9   |                     | œ  |                  | 82 |                  | 83  |            | <b>%</b> |            | 82 |                  | 98 |                  | 87       |                  |

= Positive phase A-impulse in kPa-milliseconds

= blunt cylinder.

 Peak overpressure in kPa.
 A-duration (defined in MIL-STD-1474B) in milliseconds.
 B-duration (defined in MIL-STD-1474B) in milliseconds. Imp. SP BC Peak A

#### 2. WEAPON TESTING

Measurements were made near an 84-mm recoilless antitank weapon and a 105-mm howitzer. The measurements made by USACSTA were in accordance with the standards established by Patterson et al (encl 2, ref 6) and only the blunt cylinder mount was used.

Figure 2-1 shows transducers mounted near the 84-mm Carl Gustaf M2 recoilless rifle. Figure 2-2 shows a closeup view of the transducers and illustrates the measurement technique used to establish transducer positions.

Figure 2-3 shows the 10 measurement locations. Note that there are five pairs of positions symmetrically around the centerline of the weapon. The weapon and the transducers were located 1.52 meters (5 ft) above the ground. Table 2-1 lists the results.



1 page 24





Closeup of transducers near the 84-mm Carl Gustaf antitank weapon, showing technique used to locate transducer position. Figure 2-2.



Weapon Figure 2-3. Location of measurement positions near the 84-mm Carl Gustaf antitank weapon. centerline and all transducers located 1.52 meters above the ground.

BLAST OVERPRESSURE AT VARIOUS POSITIONS NEAR THE 84-MM CARL GUSTAF ANTITANK WEAPON TABLE 2-1.

| <b>m</b>                   |          | 12                       |          | 14                       |          | 15                       |          | 10                       |          | 8 ~                          |
|----------------------------|----------|--------------------------|----------|--------------------------|----------|--------------------------|----------|--------------------------|----------|------------------------------|
|                            |          |                          |          |                          |          |                          |          |                          |          | <b>80 10</b>                 |
| <                          | Mean     | 2.0                      | Mean     | 2.4                      | Mean     | 1.0                      | Mean     | 1.51                     | Mean     | 0.8                          |
| Peak                       | Σ,       | 30.01 2.00<br>27.68 2.22 | Σ.       | 24.46 2.43<br>21.98 2.14 | <b>.</b> | 21.93 1.05<br>21.02 1.73 | Σ.       | 33.69 1.51<br>31.72 1.65 | æ        | 77.00 1.18                   |
| <b>~</b>                   |          | ==                       |          | 15                       |          | 14<br>14                 |          | 01                       |          | 9                            |
| <b>4</b>                   | Round 15 | 1.23                     | Round 20 | 3.72                     | Round 25 | 2.24                     | Round 30 | 1.60                     | Round 35 | 0.76                         |
| B Peak A B Peak A B Peak A | Ron      | 38.04<br>25.31           | Rou      | 26.34 3.72<br>19.72 2.78 | Rou      | 21.14 2.24<br>20.19 1.23 | Rou      | 35.37<br>29.29           | Rou      | 6 76.47 0.76<br>7 77.91 0.83 |
| <b>m</b>                   |          | 13                       |          | 14<br>14                 |          | 14<br>14                 |          | 01                       |          | 9 ~                          |
| V                          | Round 14 | 3.78                     | Round 19 | 2.39                     | Round 24 | 1.14                     | Round 29 | 1.22                     | Round 34 | 0.94                         |
| Peak                       | Rou      | 26.81<br>25.34           | Rou      | 19.84<br>19.43           | Rou      | 18.98 1.14<br>20.57 1.21 | Rou      | 33.17 1.22<br>31.51 1.33 | Rou      | 84.18 0.94<br>73.29 0.94     |
| •                          |          | 12                       |          | 15                       |          | 17                       |          | 011                      |          | 7                            |
| ¥                          | Round 13 | 1.97                     | Round 18 | 2.27                     | Round 23 | 0.57<br>3.51             | Round 28 | 1.27                     | Round 33 | 1.36                         |
| Peak                       | Rou      | 24.06<br>27.86           | Rou      | 19.86 2.27<br>24.05 1.94 | Rou      | 22.53 0.57<br>24.43 3.51 | Rou      | 32.43 1.27<br>33.36 1.94 | Rou      | 76.64 1.36<br>74.75 0.75     |
| <b>F</b>                   |          | 11                       |          | 14                       |          | 14                       |          | 11 10                    |          | <b>6</b> ∞                   |
| V                          | Round 12 | 1.54                     | Round 17 | 1.94                     | Round 22 | 0.67                     | Round 27 | 1.59                     | Round 32 | 1.53                         |
| Peak                       | Rou      | 36.78                    | Ron      | 24.86 1.94<br>22.53 1.88 | Rou      | 22.04 0.67<br>20.33 2.16 | Rou      | 32.21 1.59<br>32.00 1.69 | Rou      | 57.26 1.53<br>71.89 0.88     |
|                            |          | 12                       |          | 14                       | _        | 16                       |          | 10                       |          | 10                           |
| V                          | Round 11 | 1.47                     | Round 16 | 1.84                     | Round 21 | 0.63                     | Round 26 | 1.88                     | Round 31 | 1.29                         |
| Peak A                     | Roui     | 24.34 1.47<br>26.41 1.47 | Roui     | 31.42 1.84<br>24.19 1.91 | Roui     | 24.95 0.63<br>19.60 0.53 | Rou      | 35.29 1.88<br>32.42 1.87 | Roui     | 90.46 1.29 65.51 0.84        |
| Position<br>No.            | -        | 6 6                      |          | m <b>so</b>              |          | 4 /                      |          | 10                       |          | v 0                          |

Peak = Peak overpressure in kPa.

A = A-duration (defined by MIL-STD-1474B) in milliseconds.

B = B-duration (defined by MIL-STD-1474B) in milliseconds.

Figure 2-4 shows the blast overpressure in the operator position. Note that this measurement (peak = 24.86 kPa = 181.9 dB, B = 14 ms) exceeds the current US Army human tolerance level specified by the Z curve of MIL-STD-1474B (encl 2, ref 7).

Figure 2-5 shows the arrival time of blast overpressure at the five different positions. Figure 2-6 shows the initial overpressure at position No. 5 of three successive rounds. Large round-to-round variations in peak pressure were observed at position No. 5. As shown in the plot, these variations appear to be caused by differences in arrival time of two shock waves.

Measurements were also made near the 105-mm L5 pack howitzer firing high explosive projectiles with charge 7 and elevated to 740 mils.

Figure 2-7 shows the 10 measurement locations. Note that, once again, there are five pairs of positions located symmetrically around the centerline of the weapon. Positions 2 and 9 represent the location of a kneeling crew member and transducers at these positions were located 1 meter above the ground. At all other positions, the transducers were located 1.52 meters above the ground.

The results are tabulated in Table 2-2. The highest overpressures were obtained at positions 1 and 10. Note that the example shown in Figure 2-8 (peak = 47.62 kPa = 187.5 dB, B = 13 ms) clearly exceeds the Z-curve of MIL-STD-1474B.

Also note that the measurements at locations 1 and 10 are significantly different, even though these positions are in symmetric positions. This discrepancy became more pronounced as the test progressed because the weapon moved slightly to the left (toward position 10). This large change in overpressure caused by a small change in position indicates that a significant gradient is present in this portion of the overpressure field.









Figure 2-7. Measurement positions near the 105-mm L5 howitzer. Transducers at positions No. 2 and 9 were located 1 meter above the ground. All other transducers were located 1.52 meters above the ground.

TABLE 2-2. BLAST OVERPRESSURE AT VARIOUS POSITIONS NEAR THE 105-MM L5 HOWITZER (CHARGE 7)

| Position   |                          |          |    |       |          |          |                          |          |          |                          |          |          |                            |                        |          |                          |      |          |
|------------|--------------------------|----------|----|-------|----------|----------|--------------------------|----------|----------|--------------------------|----------|----------|----------------------------|------------------------|----------|--------------------------|------|----------|
| No.        | Peak A B                 | V        |    | Peak  | ¥        | <b>m</b> | B Peak A                 | A        |          | Peak                     | ¥        | B        | B Peak A B Peak A B Peak A | Ą                      | 8        | Peak                     |      | 8        |
|            | Roui                     | Round 56 |    | Rou   | Round 57 |          | Rou                      | Round 58 | -        | Ron                      | Round 59 | <u>-</u> | Rou                        | Round 60               |          | Ž                        | Mean |          |
| 6 2        | 10.17 4.65<br>10.72 4.36 | 4.65     | 19 | 11.51 | 4.49     | 18<br>24 | 10.75<br>10.63           | 2.29     | 17       | 11.33                    | 3.85     | 16<br>16 | 10.93                      | 3.97                   | 17       | 10.94<br>10.59           | 3.85 | 17<br>18 |
|            | Roui                     | Round 61 |    | Rou   | Round 62 |          | Rou                      | Round 63 |          | Rou                      | Round 64 |          | Rou                        | Round 65               |          | Ĭ                        | Mean |          |
| m <b>∞</b> | 14.53                    | 2.59     | 13 | 14.75 | 2.88     | 14       | 14.54 2.72<br>14.05 2.04 | 2.72     | 14       | 15.45                    | 2.03     | 13       | 14.79<br>12.92             | 2.43                   | 14<br>17 | 14.81                    | 2.53 | 14<br>16 |
|            | Roui                     | Round 66 |    | Rou   | Round 67 |          | Rou                      | Round 68 |          | Ron                      | Round 69 |          | Rou                        | Round 70               |          | Ě                        | Mean |          |
| 7 7        | 8.89                     | 2.59     | 13 | 9.04  | 2.12     | 18       | 10.02                    | 2.15     | 17       | 8.98                     | 1.77     | 17       | 9.54                       | 9.54 4.56<br>7.80 2.18 | 14       | 9.29                     | 2.64 | 16<br>17 |
|            | Roui                     | Round 71 |    | Rou   | Round 72 |          | Rou                      | Round 73 |          | Rou                      | Round 74 | ·        | Rou                        | Round 75               |          | Ě                        | Mean |          |
| 10.00      | 10.96 2.11<br>9.26 2.59  | 2.11     | 14 | 10.55 | 2.29     | 14       | 9.63                     | 2.45     | 14<br>17 | 10.00                    | 2.31     | 14<br>17 | 11.23 1.87<br>9.58 2.39    | 1.87                   | 16<br>17 | 10.47 2.21<br>9.79 2.26  | 2.21 | 15<br>17 |
|            | Roui                     | Round 77 |    | Rou   | Round 78 |          | Rou                      | Round 79 |          | Rou                      | Round 80 |          | Rou                        | Round 81               | -        | £                        | Mean |          |
| 10         | 47.62                    | 1.76     | 13 | 45.09 | 2.13     | 13       | 49.00                    | 1.90     | 13       | 47.68 1.70<br>57.76 1.41 | 1.70     | 13       | 44.35                      | 2.00                   | 13       | 46.75 1.90<br>56.09 1.48 | 1.90 | 13       |

Peak = Peak overpressure in kPa.

A = A-duration (defined by MIL-STD-1474B) in milliseconds.

B = B-duration (defined by MIL-STD-1474B) in milliseconds.



1 page 34

#### REFERENCES

- 1. Soroka's Air Blast Tables, Unpublished.
- 2. Goodman, H. J., Compiled Free Air Blast Data on Bare Spherical Pentolite, Ballistic Research Laboratory Report No. 1092, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, February 1960.
- 3. Walton, W. Scott, Improvement of Air Blast Measurement, Report No. APG-MT-5481, US Army Aberdeen Proving Ground, Aberdeen Proving Ground, MD, March 1981.
- 4. Hilten, John S.; Vezzetti, Carol F.; Mayo-Wells, J. Franklin; Lederer, Paul S.; Experimental Investigation of Means for Reducing the Response of Pressure Transducers to Thermal Transients, NBS Technical Note 961, US Department of Commerce, National Bureau of Standards, Washington, DC, January 1978.
- 5. Clare, P., and Clare, R.; The Measurement of Impulsive Blast Noise From Various Army Weapon Systems, pages 99 to 136, Technical Proceedings of the Muzzleblast Overpressure Workshop, USAARRADCOM, Dover, NJ, 25 to 26 May 1982.
- 6. Patterson, James; Coulter, George A,; Kalb, Joel; Garinther, Georges; Mozo, Benjamin; Gion, Edmund; Teel, George; Walton, W. Scott; Standardization of Muzzle Blast Overpressure Measurements, Special Publication ARBRL-AP-00014, US Army Armament Research and Development Command, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1980.
- 7. MIL-STD-1474B(MI), Military Standard, Noise Limits for Army Materiel, 18 June 1979.

#### DISTRIBUTION LIST

#### TECOM Project No. 7-CO-OM4-APO-002

| 411                                                | No. of        |
|----------------------------------------------------|---------------|
| Addressee                                          | <u>Copies</u> |
| Commander                                          |               |
| US Army Test and Evaluation Command                |               |
| ATTN: AMSTE-AD-M (Mr. Murray)                      | 2             |
| AMSTE-CM-R (Mr. Witt)                              | 1             |
| AMSTE-CM-F (Mr. Neally)                            | 1             |
| Aberdeen Proving Ground, MD 21005-5055             |               |
| Commander                                          |               |
| US Army Environmental Hygiene Agency               |               |
| ATTN: HSHB-OA (Mr. Felix Sachs)                    | 1             |
| Building E2100                                     |               |
| Aberdeen Proving Ground, MD 21010-5422             |               |
| Commander                                          |               |
| US Army Aeromedical Research Laboratory            |               |
| ATTN: SGRD-UAH-SP (Mr. James Patterson) PO Box 577 | 1             |
| Fort Rucker, AL 36362                              |               |
| Commander                                          |               |
| US Army Armament Research and Development Center   |               |
| ATTN: SMCAR-LCA                                    | 1             |
| Dover, NJ 07801                                    |               |
| Director                                           |               |
| US Army Human Engineering Laboratory               |               |
| ATTN: AMXHE-BR (Mr. Georges Garinther)             | 1             |
| AMXHE-BR (Mr. Joel Kalb)                           | 1             |
| AMXHE-BR (Dr. Richard Price)                       | 1             |
| Aberdeen Proving Ground, MD 21005-5001             |               |
| Walter Reed Army Medical Center                    |               |
| Division of Medicine                               |               |
| Department of Respiratory Research                 |               |
| Building 40                                        | •             |
| ATTN: Dr. Phillips                                 | 1             |
| Washington, DC 20307                               |               |
| Director                                           |               |
| US Army Ballistic Research Laboratory              | _             |
| ATTN: AMXBR-OD-ST (Technical Reports)              | 2             |
| AMXBR-LFD (Dr. Schmidt)                            | 2             |
| Aberdeen Proving Ground, MD 21005-5066             |               |

| Addressee                                                                                                                                                                                                                                              | No. of Copies              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Commander US Army Combat Systems Test Activity ATTN: STECS-AD-D STECS-AA-W (Mr. Lacey) STECS-MA-P (Mr. Maxey) STECS-MA-A (Mr. Steiner) STECS-MA-B (Mr. Betzold) STECS-MA-P (Mr. Foster) STECS-MA-I (Mr. Walton) Aberdeen Proving Ground, MD 21005-5059 | 1<br>1<br>1<br>1<br>1<br>1 |
| Administrator Defense Technical Information Center ATTN: DDA Cameron Station                                                                                                                                                                           | 2                          |

Distribution unlimited.

# END

## FILMED

1-85

DTIC